Most observed galaxies, astronomically, are alive.
While there are many instances of numerous galaxies in the same region of space, they normally occur either between two galaxies only or in very dense regions of space, like at the centers of galaxy clusters. Seeing 5 galaxies interacting within a space of less than 1 million light-years is an extreme rarity, captured in gorgeous detail by Hubble here. As all of these galaxies are still forming new stars, they’re all classified as “alive” by astronomers.
Credit : NASA, ESA, STScI; Processing: Alyssa Pagan (STScI)
Alive, to a galaxy, means “actively forming stars.”
The Southern Pinwheel Galaxy, Messier 83, displays many features common to our Milky Way, including spiral arms and a central bar, as well as spurs and minor arms. The pink regions showcase transitions in hydrogen atoms driven by ultraviolet light. Since that light is primarily produced by hot, blue stars, it’s only the regions where new star-formation is actively occurring where those pink features appear.
Credit :
CTIO/NOIRLab/DOE/NSF/AURA; Acknowledgment: M. Soraisam (University of Illinois); Image processing: Travis Rector (University of Alaska Anchorage), Mahdi Zamani & Davide de Martin
Several large star-forming regions line our Milky Way’s spiral arms.
This ground-based, wide-field image of the Eagle Nebula shows the star-forming region in all its glory, with new stars, reflection and emission nebulae, and dusty features all present. Note how the material around the stars gets ionized and over time becomes transparent to all forms of light. Star-forming regions in the Milky Way are few in number and small in nature, particularly in comparison to the more active galaxies in our Universe.
Credit : ESO
When new stars form, they arrive with various masses and colors.
The (modern) Morgan–Keenan spectral classification system, with the temperature range of each star class shown above it, in kelvin. The overwhelming majority (80%) of stars today are M-class stars, with only 1-in-800 being an O-class or B-class star massive enough for a core-collapse supernova. Our Sun is a G-class star, unremarkable but brighter than all but ~5% of stars. While mass typically determines the color lifetime of a star, numerous factors can influence a star’s evolution.
Credit : LucasVB/Wikimedia Commons; Annotations: E. Siegel
Although they all form simultaneously, the hottest, bluest, shortest-lived stars evolve and die first.
The central concentration of this young star cluster found in the heart of the Tarantula Nebula is known as R136, and contains many of the most massive stars known. Among them is R136a1, which comes in at about ~260 solar masses, making it the heaviest known star. Although great numbers of cooler, redder stars are also present, the brightest, bluest ones dominate this image.
Credit : NASA, ESA, CSA, STScI, Webb ERO Production Team
A few galaxies — mostly ellipticals within clusters — ceased forming stars long ago.
This chain of large galaxies is found near the center of the Perseus cluster of galaxies, with several of these galaxies being typical of the large, bright, evolved galaxies found at the centers of most massive galaxy clusters. For many of these galaxies, the stars found inside of them are primarily older and redder, with only small populations of bluer stars found inside.
Credit : NASA, ESA, and M. Beasley (Instituto de Astrofísica de Canarias)
Over time, the heavier, bluer stars die off.
By mapping out the colors and magnitudes of stars that were all born at the same time, like members of a star cluster or globular cluster, you can determine the age of the cluster by identifying where the main sequence ends and the heavier, more massive stars have “turned off” and begun evolving into subgiants. Measuring the subgiant population very well is one key to understanding a stellar population’s age.
Credit : Mike Guidry, University of Tennessee
Since redder stars survive, galaxies lacking new stellar populations are called “red-and-dead” by astronomers.
Galaxy clusters, like Abell S740, are the largest bound structures in the Universe. When spirals merge, for example, a large number of new stars form, but either post-merger or by speeding through the intra-cluster medium, gas can be stripped away, leading to the end of star formation in that galaxy and, eventually, a red-and-dead final structure.
Credit : NASA, ESA, Hubble Heritage Team (STScI / AURA); J. Blakeslee
Measuring the intrinsic color of a galaxy’s starlight determines whether a galaxy is dead or alive.
The massive galaxy cluster SDSS J1004+4112, is an enormous clump of matter that allows us to probe the very early Universe from the galaxies within it, and the gravitationally lensed galaxies magnified by the foreground cluster’s gravity. The variety of galaxy colors found within the central cluster highlight the enormous variation in intrinsic clusters present in the underlying stellar populations.
Credit : ESA, NASA, K. Sharon (Tel Aviv University) and E. Ofek (Caltech)
Mainstream astronomy suggests that molecular gas reserves form new stars within galaxies .
This image features data from 10 different JWST filters: 6 from the near-infrared and 4 from the mid-infrared. As a result, features that include stars, gas, dust, and various molecular signatures can all be revealed at once, showcasing where star formation is occurring and will occur in the future. Molecular gas, present in great abundance, is the key.
Credit : NASA, ESA, CSA, STScI, Webb ERO Production Team
If a galaxy possesses no new stars, it must be gas-free.
The ‘red-and-dead’ galaxy NGC 1277 is found inside the Perseus cluster. While the other galaxies contain a mix of red-and-blue stars, this galaxy hasn’t formed new stars in approximately 10 billion years.
Credit : NASA, ESA, M. Beasley (Instituto de Astrofísica de Canarias), and P. Kehusmaa
Gas can be removed by intense star-formation periods, frequently triggered by mergers and interactions.
Galaxies undergoing massive bursts of star formation expel large quantities of matter at great speeds. They also glow red, covering the whole galaxy, thanks to hydrogen emissions. This particular galaxy, M82, the Cigar Galaxy, is gravitationally interacting with its neighbor, M81, causing this burst of activity.
Credits : NASA, ESA and the Hubble Heritage Team (STScI/AURA); Acknowledgment: J. Gallagher (University of Wisconsin), M. Mountain (STScI) and P. Puxley (National Science Foundation)
Rapid journeys through a galaxy cluster’s intergalactic medium also strip interior gas away.
Located within the Norma cluster of galaxies, ESO 137-001 speeds through the intracluster medium, where interactions between the matter in the space between galaxies and the rapidly-moving galaxy itself cause ram pressure-stripping, leading to a new population of tidal streams and intergalactic stars. Sustained interactions such as this can eventually remove all of the gas from within a galaxy.
Credit : NASA, ESA, CXC
In 2018, the first red-and-dead galaxy in our cosmic backyard was identified: NGC 1277 .
Speeding at 900 km/s through the Perseus cluster, it hasn’t formed new stars in ~10 billion years .
The galaxy NGC 1277, speeding through the Perseus cluster, not only contains predominantly red stars, but red (and not blue) globular clusters, as well as an abnormally large supermassive black hole to go along with its rapid speed through this rich galaxy cluster.
Credit : M.A. Beasley et al., Nature, 2018
Its stars and globular clusters are exclusively red-colored.
This is a blink comparison that plots the location of the red stars and blue stars that dominate the globular clusters in galaxies NGC 1277 and NGC 1278. It shows that NGC 1277 is dominated by ancient red globular clusters. This is evidence that galaxy NGC 1277 stopped making new stars many billions of years ago, compared to NGC 1278, which has more young blue star clusters.
Credit : NASA, ESA, and Z. Levay (STScI)
Unless gas reserves arrive anew, no new stars should form within it.
This graph shows the distribution of globular clusters as sorted by the color of the stars inside, for the field of view of the Perseus Cluster that includes the neighboring galaxies NGC 1277 and NGC 1278. While NGC 1278 and background globular clusters are predominantly blue, NGC 1277 shows itself to be red-and-dead. Some studies suggest that no new stars have been formed within it for approximately 10 billion years.
Credit : M.A. Beasley et al., Nature, 2018
Mostly Mute Monday tells an astronomical story in images, visuals, and no more than 200 words.